π Activity 7.5.1. π πRecall that the length of a parametric curve is given by .β«t=at=b(dxdt)2+(dydt)2dt. π(a) π πLet x(t)=rcosβ‘(ΞΈ) and y(t)=rsinβ‘(ΞΈ) and show that the length of a polar curve r=f(ΞΈ) with Ξ±β€ΞΈβ€Ξ² is given by .β«ΞΈ=Ξ±ΞΈ=Ξ²(r)2+(drdΞΈ)2dΞΈ. π(b) πFind an integral computing the arclength of the polar curve defined by r=3cosβ‘(ΞΈ)β2 on .Ο/3β€ΞΈβ€Ο. π(c) πFind the length of the cardioid .r=1βcosβ‘(ΞΈ).
π(a) π πLet x(t)=rcosβ‘(ΞΈ) and y(t)=rsinβ‘(ΞΈ) and show that the length of a polar curve r=f(ΞΈ) with Ξ±β€ΞΈβ€Ξ² is given by .β«ΞΈ=Ξ±ΞΈ=Ξ²(r)2+(drdΞΈ)2dΞΈ.
π(b) πFind an integral computing the arclength of the polar curve defined by r=3cosβ‘(ΞΈ)β2 on .Ο/3β€ΞΈβ€Ο.